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Abstract

This paper deals with the event-triggered control for networked cascade control systems. Unlike conventional
event-triggered schemes that predetermine a fixed threshold to reduce the data-releasing rate, this paper proposes
a novel event-triggered mechanism (ETM) in an adaptive way. Under this ETM, it has the following merits: 1) the
data-releasing rate remains at a lower level so as to save limited network bandwidth; 2) the reliability of control
systems can be improved since the threshold of ETM is increased gradually with the elapse of time till the next
event is generated. An integrated model of networked cascade control systems with consideration of stochastic
nonlinearity, actuator failures and ETM is established. Sufficient conditions are obtained to ensure the mean-
square stability and stabilization of networked cascade control systems. Finally, two examples are exploited to
show the effectiveness of the proposed method.

Key words: Event-triggered mechanism; Networked cascade control system; Stochastic nonlinearity; Reliable
control

1. Introduction

Cascade control (CC) is an effective strategy to improve the control performance of the
system, especially in the presence of disturbance in the model [1]. CC systems are usually
composed of two sub-processes in series. The inner loop of CC systems is sufficiently faster
than the outer loop. Therefore, most of the disturbance is considered into the inner loop in
designing a CC system to achieve a better disturbance rejection. The outer control loop is
mainly responsible for the steady performance of the control system. The components of
feedback control systems, such as sensors, controllers and actuators, are connected via a com-
munication network, which is called networked control systems (NCSs) [2]. Owing to the
fact that NCSs have many advantages, such as low cost, ease of system diagnosis and main-
tenance. NCSs have many potential applications in modern large scale industry control area.
Examples include, but are not limited to, aircraft and space shuttle [3], power systems [4] and
high-performance automobiles [5]. Compared to the conventional point-to-point communi-
cation for the control system, the networked communication has induced many challenging
issues, such as time induced delay, packet dropout, limited communication resources [6–9].
Networked cascade control systems (NCCSs) possess the advantages of both CC systems and
NCSs [10, 11]. There are some reports on practical applications, for example, the authors in
[12, 13] investigated boiler-turbine control systems with networked cascade control architec-
tures.
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For NCCSs, a large amount of sampled data is released into the communication network,
which will inevitably overburden the limited network-bandwidth and lead to a poor networked
quality of service (QoS). It may degrade the control performance of the system with a poor QoS
by using the conventional time-triggered mechanism (TTM). Some “unnecessary” packets are
transmitted over the network due to the TTM with a constant data-releasing period although
there is few important information for the system in the transmission. Event-triggered mech-
anism (ETM) becomes an alternative scheme to guarantee a desired control performance with
a lower data-releasing rate, which has gained much attention [14, 15]. In [2], the authors pro-
posed a design method for the event-triggered NCSs by transferring the hybrid system with a
time-triggered sampling and event-triggered releasing into a time-delayed system. A co-design
of both reliable filtering and ETM for a class of NCSs with multiple sensor distortion has been
investigated in [16]. A switched communication scheme between the TTM and ETM was in-
vestigated in [17]. Under cyber-attacks, an ETM design method was developed in [18, 19]
to save the limited networked communication resource. The authors in [20, 21] designed an
event-triggered output feedback controller for distributed networked systems. Using event-
triggered transmission strategies, the authors in [22] designed a reliable control for NCSs with
sensor/actuator failure in multiple channels.

In the aforementioned literature concerned with ETM, for example in [2, 14], whether the
data packet needs to release into the network or not is dependent on the following event-
triggering condition

[x(ks + l) − x(ks)]
T Ω[x(ks + l) − x(ks)] > δxT (ks)Ωx(ks), (1)

where the threshold δ is a predetermined positive constant, and x(ks), ks, l and Ω are defined
in (4). From (1), one can see that the threshold plays a decisive role in data-releasing. For
example, if one chooses δ → 0, the communication scheme tends to be the TTM. In fact,
the threshold should update its value at any sampling instant to adapt different cases. The
disturbance is bigger, for instance, a lesser value of δ is needed. To address this problem,
some improved ETMs for NCSs have been put forward [23–27]. The threshold, in [23], was
designed to adapt with the state of both the nonlinear system and the reference model. An
adaptive threshold satisfying δ̇(t) = dδ(t) with d ∈ {1, 0,−1} was developed in [24]. To get
a variable threshold, the authors in [27] added an attenuation exponential function γα−l(ks+ jh)

on the right-hand side of the event-triggered condition in (1). Under this scheme, the data
releasing rate at the beginning of process is time-varying, however, this item fades away with
the time proceeding.

The ETM-based control input is held by the zero-order hold (ZOH) till the next event is
generated. It means that the controller has no updated information from the control process
during this period. If the releasing period (RP) is too large, the system becomes unreliable in
practice, although some results on stability and stabilization can be obtained theoretically. On
the other hand, the system with a small RP can not improve the limited network bandwidth.
So far, there has been few discussion on this practical issue. Therefore, it is a big challenge to
balance these two contradictions, which is a main motivation of this study.

The main contributions can be highlighted as follows: 1) a novel ETM is proposed. Un-
der this proposed ETM, the reliability of NCCSs can be improved and the burden of limited
network-bandwidth can be alleviated as well; 2) the feature of stochastic nonlinearity and the
actuator failure are considered in NCCSs, which is not covered in the existing literature, how-
ever, these scenarios are commonly existed in CC control systems in practice. Under the ETM,
a unified model considering the stochastic nonlinearity and actuator failure is then established;
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and 3) a co-design method of computing the parameters of both the ETM and controllers was
developed for NCCSs.
Notation: Throughout this paper, P > 0 denotes P is a positive definite matrix. “T” represents
the transpose of the matrix. I is an unit matrix. sym{X} denotes the expression X + XT . ‖ · ‖
denotes the spectral norms of matrices or the Euclidean norm for vectors. In symmetric block
matrices, we use (∗) as an ellipsis for terms that can be induced by symmetry.

2. System framework

Figure 1 shows the block diagram of NCCSs, where P1 and P2 are the primary plant and
secondary plant, respectively. S i, A and Ci (i = 1, 2) are the sensor, the actuator and the
controller, respectively. Controller C1 in the outer loop is the primary controller that regulates
the primary controlled variable y1 by setting the set-point of the inner loop. Controller C2 in
the inner loop is the secondary controller that rejects disturbance locally before it propagates
to P1. For a cascade control system to function properly, the inner loop generally responds
much faster than the outer loop. The signal transmission of the outer loop is designed to be
transmitted over the network.

Consider a discrete-time NCCS:


x1(k + 1) = A1x1(k) + B1y2(k) + f1(k, x1(k), x2(k))

y1(k) = C1x1(k) + D1ω(k)

x2(k + 1) = A2x2(k) + B2u2(k) + B3ω(k) + f2(k, x1(k), x2(k))

y2(k) = C2x2(k) + D2ω(k)

(2)

where xi(k) ∈ Rni , ui(k) ∈ Rbi and yi(k) ∈ Rmi are the state, control input and the output of each
subsystems; ω(k) ∈ `2[0,∞) is the disturbance input; fi(k, x1(k), x2(k)) is a stochastic nonlinear
function; Ai, Bi, Ci and Di for i = 1, 2 are known real matrices with appropriate dimensions.
For convenience, fi(k, x1(k), x2(k)) will be denoted by fi(k) in the subsequent description.

Network

C1 C2 A P2 P1

S1

S2ZOH

AETC

Figure 1: The framework of the NCCS

2.1. An improved adaptive ETM
As shown in Figure 1, the outer control loop signal is transmitted over the network. Let ks

denote releasing instants for s = 0, 1, 2, · · · . Before designing the adaptive ETM, we firstly
introduce two variables, the one is e(x(ks), x(ks + l)) for l = 0, 1, · · · , lM, and the other is
δ(δ1(e(ks, l)), δ2(l)). e(x(ks), x(ks + l)) denotes the error between the latest releasing data and
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the current sampling data, i.e. e(x1(ks), x1(ks + l)) = x1(ks) − x1(ks + l); δ(δ1(e(ks, l)), δ2(l))
denotes the threshold of the adaptive ETM. For notational simplicity, e(ks, l) and δ(ks, l) are
used to represent e(x1(ks), x1(ks + l)) and δ(δ1(e(ks, l)), δ2(l)), respectively, in the subsequent
description.

Define

δ(ks, l) = δ0 + λδ1(e(ks, l)) + (1 − λ)δ2(l) (3)

where δ1(e(ks, l)) = α1e−β1‖e(ks,l)‖2 , δ2(l) = −α2(l − β2), α1, β1, α2, β2, δ0, λ are known constants,
which satisfy δ0 + α1 > α2β2 and λ ∈ (0, 1).

Assume the first sampling data should be released into the network, i.e. the packet at
instant ks = 0 needs to be transmitted over the network. Then, the next releasing instant ks+1 is
determined by the following event-triggering condition

ks+1 = max
{
ks + l + 1

∣∣∣∣e(ks, l)T Ωe(ks, l) < δ(ks, l)xT
1 (ks)Ωx1(ks)

}
(4)

where Ω > 0 is a weight matrix.
The flow chart of ETM implementation is shown in Figure 3, form which one can see that

the event of data-releasing is generated when the event-triggering condition (4) is violated.
The sampling data at k = ks + lM + 1 is big enough to violate the condition (4), then this instant
(ks + lM + 1) is chosen as the next releasing instant (ks+1). Therefore, lM packets are discarded
from the latest releasing instant to the next releasing instant. Figure 2 shows an example of a
data-releasing sequence, where ‘F’ and ‘∅’ represent the releasing instant and the instant of
packet-dropping, respectively.

Figure 2: An example of data-releasing sequence

Remark 1. From (4), one can see that the smaller δ(ks, l) is, the bigger the data releasing rate
will be. Furthermore, δ(ks, l) can be adjusted adaptively rather than a constant as in [2] or only
considering one factor as in [24].

Remark 2. In (3), δ1(e(ks, l)) increases with the decreasing of e(ks, l). Specially, δ1(e(ks, l))
tends to be α1 when the system tends to be stable. This means that the releasing rate mainly
depends on α1 when the system is around the equilibrium point, while β2 affects the maximum
RP.

Remark 3. It is unreliable to the control process if the controller does not access updated data
from the controlled plant for a long time in practice. This unreliability is potentially existed in
the conventional event-triggered schemes, especially when the system tends to be stable, few
data-releasing events can be generated to update control input. In this study, δ2(l) in (4) will
decrease with the step k going before the next event is triggered. Thus, the maximum RP can
be constrained. λ in ( 3) is a weight to adjust the role of data-releasing rate in steady-state and
transient state.

From (3), one can obtain that

0 < δ(ks, l) ≤ δ0 + λα1 + (1 − λ)α2β2 , δM (5)
4
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Condition 3

N

Y

Figure 3: The flow chart of ETM implementation

2.2. Modeling of NCCS
Assume the packet at instant ks transmitted over network arrives at the actuator side at

instant ak. Then ak = ks + τks , where τks is a network-induced delay that satisfies τ ≤ τks ≤ τ̄.
Define Ll

k , [al
k, a

l+1
k ), where al

k = ks + l + τl
ks

. Set τ0
ks

= τks and τlM+1
ks

= τks+1, then one

can know that [ak, ak+1) = ∪lM
l=0Ll

k. Therefore, τl
ks

for l ∈ {1, 2, · · · , lM} is an artificial delay that
satisfies

τ ≤ τl
ks
≤ τ̄ (6)

For k ∈ Ll
k = [ks + l + τl

ks
, ks + l + 1 + τl+1

ks
), we define

d(k) = k − ks − l (7)

Then it follows that d1 ≤ d(k) ≤ d2 with d1 = τ and d2 = 1 + τ̄ due to (6).
Combining with Figure 1, we can get the following cascade control law for k ∈ Ll

k as
{

u1(k) = K1x1(ks)

u2(k) = u1(k) + K2x2(k)
(8)

Consider the following stochastic actuator failure model

uF
2 (k) = Ξu2(k) (9)

where Ξ = diag{ψ1, ψ2, · · · , ψm}, ψi is a random variable which is unrelated with ψ j for i , j.
The mathematical expectation and variance of ψi are ψ̄ and σ2

i , respectively.
Define

x̃(k) =

[
x1(k)
x2(k)

]
, η(k) =

[
f1(k)
f2(k)

]
,A =

[
A1 B1C2

0 A2 + B2Ξ̄K2

]
,B1 =

[
0

B2(Ξ − Ξ̄)K2

]
,

B2 =

[
0

B2Ξ̄K1

]
,B3 =

[
0

B2(Ξ − Ξ̄)K1

]
,B4 =

[
B1D2

B3,

]
, Ξ̄ = diag{ψ̄1, ψ̄2, · · · , ψ̄m}
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.
Combining (2) and (9), we can get the closed-loop system with actuator failures as follows

x̃(k + 1) = ξ(k) + ξ̃(k) (10)

where ξ(k) = Ax̃(k) +B2(x1(k − d(k)) + e(ks, l)) +B4ω(k), ξ̃(k) = B1x2(k) +B3(x1(k − d(k)) +

e(ks, l)) + η(k).
Borrowed from [28], the stochastic nonlinear functions in (2) are assumed to satisfy

E {η(k)|x̃(k)} = 0 (11)

E
{
η(k)ηT (k)|x̃(k)

}
≤

q∑

i=1

%i%
T
i x̃T (k)Hi x̃(k) (12)

E
{
η(k)ηT (l)|x̃(k)

}
= 0 l , k (13)

where %i =

[
%1i

%2i

]
with %1i ∈ Rn1×1 and %2i ∈ Rn2×1; and Hi = diag{Fi,Gi} with Fi > 0 and

Gi > 0.

Remark 4. Real physical processes generally have features of stochastic nonlinearity. How-
ever, few results on CC systems are concerned with this feature [29]. The stochastic coupling
among different variables, in this study, is modeled by fi(k) in (2).

3. H∞ control for NCCS with stochastic nonlinearities and adaptive ETM

In this section, we will study the stability analysis and controller synthesis for NCCSs by
using the proposed ETM proposed in Section 2. Before stating the main results, a definition
and a lemma are introduced first.

Definition 1. [16] The NCCS (10) is mean square stable with H∞ norm bound γ if the follow-
ing conditions hold:
(1) When ω(k) = 0, the NCCS (10) is mean square stable;
(2) Under zero initial condition, for a scalar γ > 0 and ω(k) ∈ `2[0,∞), y1(k) satisfies
E

{∑∞
k=0 ‖y1(k)‖22

}
≤ γ2E

{∑∞
k=0 ‖ω(k)‖22

}
.

Lemma 1. [30] For a given symmetric positive matrix R ∈ Rn,scalar 0 ≤ d1 ≤ d2, and vector
function h : [−d2,−d1]→ Rn, the following inequality holds

−(d2 − d1)
k−d1−1∑

i=k−d2

hT (i)Rh(i) ≤ −
[
ϕ1(k)
ϕ2(k)

]T [
R 0
0 3R

] [
ϕ1(k)
ϕ2(k)

]

where h(i) = x1(i + 1) − x1(i), ϕ1(k) = x1(k − d1) − x1(k − d2), ϕ2(k) = x1(k − d1) + x1(k − d2) −
2

d21+1

∑k−d1
i=k−d2

x1(i).
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For presentation convenience, we define the following vectors:

ξ(k) = col

x1(k), x1(k − d1), x1(k − d(k)), x1(k − d2),
k∑

s=k−d1

x1(s)
d1 + 1

,

k−d1∑

s=k−d(k)

x1(s)
d(k) − d1 + 1

,

k−d(k)∑

s=k−d2

x1(s)
d2 − d(k) + 1

, e(ks, l), x2(k), ω(k)

 ,

h̃(k) = x1(k + 1) − x1(k) − f1(k), χ(k) = ξ̄(k) − η(k),

ζ1(k) =

[
x1(k) − x1(k − d1)

x1(k) + x1(k − d1) − 2
d1+1

∑k
s=k−d1

x1(s)

]
,

ζ2(k) =

[
x1(k − d1) − x1(k − d(k))

x1(k − d1) + x1(k − d(k)) − 2
d(k)−d1+1

∑k−d1
s=k−d(k) x1(s)

]
,

ζ3(k) =

[
x1(k − d(k)) − x1(k − d2)

x1(k − d(k)) + x1(k − d2) − 2
d2−d(k)+1

∑k−d(k)
s=k−d2

x1(s)

]

Theorem 1. For given positive constants γ, d1, d2, δM and positive-definite matrices Fi,Gi, if

there exist matrices P j > 0,Q j > 0,R j > 0, S =

[
S 1 S 2

S 3 S 4

]
and positive scalars εi, θi, ρi (i =

1, · · · , q; j = 1, 2) such that

Π1 =



Π11 ∗ ∗ ∗
Π21 Π22 ∗ ∗
Π31 0 Π33 ∗
Π41 0 0 Π44


< 0, (14)

[−ε−1
i ∗

%iε
−1
i −P−1

]
≤ 0,

[ −θ−1
i ∗

%1iθ
−1
i −R−1

1

]
≤ 0,

[ −ρ−1
i ∗

%1iρ
−1
i −R−1

2

]
≤ 0 (15)

[
R2 ∗
S R2

]
≥ 0, (16)

where

Π11 =



Θ1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
−2R1 Θ2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 Θ3 Θ4 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 Θ5 Θ6 Θ7 ∗ ∗ ∗ ∗ ∗ ∗

6R1 6R1 0 0 −12R1 ∗ ∗ ∗ ∗ ∗
0 6R2 Θ8 Θ9 0 −12R2 ∗ ∗ ∗ ∗
0 Θ10 Θ11 6R2 0 −4U4 −12R2 ∗ ∗ ∗
0 0 0 0 0 0 0 −Ω ∗ ∗
0 0 0 0 0 0 0 0 −P2 ∗
0 0 0 0 0 0 0 0 0 −γ2



,

Π21 =



C1 0 0 0 0 0 0 0 0 D1

A1 0 0 0 0 0 0 0 B1C2 B1D2

0 0 B2K1 0 0 0 0 B2K1 A2 + B2K2 B3

d1(A1 − I) 0 0 0 0 0 0 0 d1B1C2 d1B1D2

d21(A1 − I) 0 0 0 0 0 0 0 d21B1C2 d21B1D2


,
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Π22 = diag{−I,−P−1
1 ,−P−1

2 ,−R−1
1 ,−R−1

2 },
Π31 =

[
F 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 G 0

]
,

Π33 = diag{−Π̂33,−Π̂33}, Π̂33 = diag{ε−1
1 I, · · · , ε−1

q I, d1θ
−1
1 I, · · · , d1θ

−1
q I, d21%

−1
1 I, · · · , d21%

−1
q I},

Π41 =
[
0 0 Θ12 0 0 0 0 Θ12 Θ13 0

]
,

Π44 = diag{−P−1
2 , · · · ,−P−1

2︸              ︷︷              ︸
m

},

Θ1 = Q1 − 4R1 − P1,Θ2 = −Q1 + Q2 − 4R1 − 4R2, P = diag{P1, P2},
Θ3 = −2R2 − S 1 − S 2 − S 3 − S 4,

Θ4 = −8R2 + sym{S 1 − S 2 + S 3 − S 4} + δMΩ,

Θ5 = S 1 + S 2 − S 3 − S 4,Θ6 = −2R2 − S 1 + S 2 + S 3 − S 4,

Θ7 = −Q2 − 4R2,Θ8 = 6R2 + 2S T
2 + 2S T

4 ,

Θ9 = −2S T
2 + 2S T

4 ,Θ10 = 2S 3 + 2S 4,Θ11 = 6R2 − 2S 3 − 2S 4,

Θ12 =



σ2
1B2L1K1

...
σ2

mB2LmK1

 ,Θ13 =



σ2
1B2L1K2

...
σ2

mB2LmK2

 ,

F =
[√

F1 · · ·
√

Fq d1
√

F1 · · · d1
√

Fq d21
√

F1 · · · d21
√

Fq

]T
,

G =
[√

G1 · · ·
√

Gq d1
√

G1 · · · d1
√

Gq d21
√

G1 · · · d21
√

Gq

]T
,

Ri = diag{−Ri,−3Ri}, d21 = d2 − d1

Then the NCCS (10) under the adaptive ETM (4) is mean square stable with H∞ perfor-
mance γ.

Proof. Consider the following Lyapunov-Krasovskii candidate for the NCCS (10)

V(k) = V1(k) + V2(k) + V3(k) (17)

where

V1(k) = x̃T (k)Px̃(k)

V2(k) =

k−1∑

s=k−d1

xT
1 (s)Q1x1(s) +

k−d1−1∑

s=k−d2

xT
1 (s)Q2x1(s)

V3(k) =

−1∑

θ=−d1

k−1∑

s=k+θ

d1hT (s)R1h(s) +

−d1−1∑

θ=−d2

k−1∑

s=k+θ

d21hT (s)R2h(s)

Calculating the difference of the Lyapunov functional (17) along the dynamics (10), we have

E {∆V1(k)} = E{ξ(k)T Pξ(k)} + E{ξ̃T (k)Pξ̃(k)}
E {∆V2(k)} = E

{
xT

1 (k)Q1x1(k) + xT
1 (k − d1)(Q2 − Q1)x1(k − d1) − xT

1 (k − d2)Q2x1(k − d2)
}

E {∆V3(k)} = E
hT (k)Rh(k) − d1

k−1∑

s=k−d1

hT (k)R1h(k) − d21

k−d1−1∑

s=k−d2

hT (k)R2h(k)



(18)
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where R = d2
1R1 + d2

21R2.
Note that

E
{
ξ̃T (k)Pξ̃(k)

}
= E

{
χT (k)Pχ(k)

}
+ E

{
ηT (k)Pη(k)

}
(19)

E
{
hT (k)Rh(k)

}
= E{h̃T (k)Rh̃(k)} + E

{
f T
1 (k)R f1(k)

}
(20)

It is known that (Ξ − Ξ̄) =
∑m

i=1(ψi − ψ̄i)Li, where Li = diag{0, · · · , 0︸   ︷︷   ︸
i−1

, 1, 0, · · · , 0︸   ︷︷   ︸
m−i

}. Then we

have

E
{
χT (k)Pχ(k)

}
= E


m∑

i=1

σ2
i ς

T
i (k)P2ςi(k)

 (21)

where ςi(k) = B2LiK1x1(k − d(k)) + B2LiK1e(ks, l) + B2LiK2x2(k).
From (11) to (13) and (15), it follows that:

E
{
ηT (k)Pη(k)

}
≤ E


q∑

i=1

tr(%i%
T
i P)x̃T (k)Hi x̃(k)

 ≤ E


q∑

i=1

εi x̃
T (k)Hi x̃(k)



E
{
f T
1 (k)R f1(k)

}
≤ E


q∑

i=1

(
d2

1tr(%1i%
T
1iR1) + d2

21tr(%1i%
T
1iR2)

)
x̃T (k)Hi x̃(k)



≤ E


q∑

i=1

(θid
2
1 + ρid

2
21)x̃T (k)Hi x̃(k)



Applying Lemma 1 yields

−d1

k−1∑

s=k−d1

hT (k)R1h(k) ≤ ζT
1 (k)R1ζ1(k) (22)

− d21

k−d1−1∑

s=k−d2

hT (k)R2h(k) = −d21

k−d1−1∑

s=k−d(k)

hT (k)R2h(k) − d21

k−d(k)−1∑

s=k−d2

hT (k)R2h(k)

≤ − d21

d(k) − d1
ζT

2 (k)R2ζ2(k) − d21

d2 − d(k)
ζT

3 (k)R2ζ3(k)

= −
[
ζ2(k)
ζ3(k)

]T [ 1
µ
R2 ∗
0 1

1−µR2

] [
ζ2(k)
ζ3(k)

]
(23)

where 0 < µ =
d(k)−d1

d21
< 1.

It is known that (15) is equivalent to


1−µ
µ

R2 ∗
S µ

1−µR2

 ≥ 0 (24)

Then we have

−d21

k−d1−1∑

s=k−d2

hT (k)R2h(k) ≤ −
[
ζ2(k)
ζ3(k)

]T [
R2 ∗
S R2

] [
ζ2(k)
ζ3(k)

]
(25)
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From (17) to (25) and using the triggering condition in (4), we obtain

E
{
∆V(k) + yT

1 (k)y1(k) − γ2ωT (k)ω(k)
}
≤

E
{
ξT (k)

(
Π11 + ΠT

21Π22Π21 + ΠT
31Π33Π31 + ΠT

41Π44Π41

)
ξ(k)

}
(26)

Applying a Schur complement to (14) yields

E
{
∆V(k) + yT

1 (k)y1(k) − γ2ωT (k)ω(k)
}
≤ 0 (27)

Then we have

E

∞∑

k=0

‖y1(k)‖22
 ≤ γ

2E

∞∑

k=0

‖ω(k)‖22
 (28)

under zero initial condition.
With the condition of ω(k) = 0, we can conclude that E{∆V(k)} < 0 from Eq. (27), and this

ends the proof.

Theorem 2. For given positive constants γ, d1, d2, δM, ρ and positive-definite matrices F̃i, G̃i,

if there exist matrices P̃ j > 0, Q̃ j > 0, R̃ j > 0 ( j = 1, 2), S̃ =

[
S̃ 1 S̃ 2

S̃ 3 S̃ 4

]
and positive constants

εi, θi, ρi (i = 1, · · · , q) such that


Π̃11 ∗ ∗ ∗
Π̃21 Π̃22 ∗ ∗
Π̃31 0 Π33 ∗
Π̃41 0 0 Π̃44


< 0 (29)

[−ε̃i ∗
%iε̃i −P̃

]
≤ 0,

[ −θ̃i ∗
%1iθ̃i −R1

]
≤ 0,

[ −ρ̃i ∗
%1iρ̃i −R2

]
≤ 0 (30)

[
R̃2 ∗
S̃ R̃2

]
≥ 0 (31)

where

Π̃11 =



Θ̃1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
−2R̃1 Θ̃2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 Θ̃3 Θ̃4 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 Θ̃5 Θ̃6 Θ̃7 ∗ ∗ ∗ ∗ ∗ ∗

6R̃1 6R̃1 0 0 −12R̃1 ∗ ∗ ∗ ∗ ∗
0 6R̃2 Θ̃8 Θ̃9 0 −12R̃2 ∗ ∗ ∗ ∗
0 Θ̃10 Θ̃11 6R̃2 0 −4Ũ4 −12R̃2 ∗ ∗ ∗
0 0 0 0 0 0 0 −Ω̃ ∗ ∗
0 0 0 0 0 0 0 0 −P̃2 ∗
0 0 0 0 0 0 0 0 0 −γ2I



,

10



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Π̃21 =



C1P̃1 0 0 0 0 0 0 0 0 D1

A1P̃1 0 0 0 0 0 0 0 B1C2P̃2 B1D2

0 0 B2K̃1 0 0 0 0 B2K̃1 A2P̃2 + B2K̃2 B3

d1(A1 − I)P̃1 0 0 0 0 0 0 0 d1B1C2P̃2 d1B1D2

d21(A1 − I)P̃1 0 0 0 0 0 0 0 d21B1C2P̃2 d21B1D2



,

Π̃22 = diag{−I,−P̃1,−P̃2,R1,R2},
Π̃31 =

[
F̃ 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 G̃ 0

]
,

Π̃33 = diag{−Π33,−Π33},Π33 = diag{ε̃1I, · · · , ε̃qI, d1θ̃1I, · · · , d1θ̃qI, d21%̃1I, · · · , d21%̃qI},
Π̃41 =

[
0 0 Θ̃12 0 0 0 0 Θ̃12 Θ̃13 0

]
,

Π̃44 = diag{−P̃2, · · · ,−P̃2︸           ︷︷           ︸
m

},Ri = −2ρP̃1 + ρ2R̃i, P̃ = diag{P̃1, P̃2},

Θ̃1 = Q̃1 − 4R̃1 − P̃1, Θ̃2 = −Q̃1 + Q̃2 − 4R̃1 − 4R̃2,

Θ̃3 = −2R̃2 − S̃ 1 − S̃ 2 − S̃ 3 − S̃ 4,

Θ̃4 = −8R̃2 + sym{S̃ 1 − S̃ 2 + S̃ 3 − S̃ 4} + δMΩ̃

Θ̃5 = S̃ 1 + S̃ 2 − S̃ 3 − S̃ 4, Θ̃7 = −Q̃2 − 4R̃2,

Θ̃6 = −2R̃2 − S̃ 1 + S̃ 2 + S̃ 3 − S̃ 4,

Θ̃8 = 6R̃2 + 2S̃ T
2 + 2S̃ T

4 , Θ̃9 = −2S̃ T
2 + 2S̃ T

4 ,

Θ̃10 = 2S̃ 3 + 2S̃ 4, Θ̃11 = 6R̃2 − 2S̃ 3 − 2S̃ 4,

Θ̃12 =



σ2
1B2L1K̃1

...

σ2
mB2LmK̃1


, Θ̃13 =



σ2
1B2L1K̃2

...

σ2
mB2LmK̃2


,

F̃ =
[
P̃1
√

F1 · · · P̃1
√

Gq d1P̃1
√

F1 · · · d1P̃1
√

Fq d21P̃1
√

F1 · · · d21P̃1
√

Fq

]T
,

G̃ =
[
P̃1
√

G1 · · · P̃1
√

Gq d1P̃1
√

G1 · · · d1P̃1
√

Gq d21P̃1
√

G1 · · · d21P̃1
√

Gq

]T

Then the NCCS (10) under the adaptive ETM (4) is mean square stable with H∞ performance
γ. Furthermore, the feedback controller gain Ki in (8) and the parameter Ω in (4) can be
obtained by

Ki = K̃iP̃
−1
i ,Ω = P̃1Ω̃P̃1 (i = 1, 2) (32)

Proof. Define P̃i = P−1
i , Q̃i = P̃T

1 QiP̃1, R̃i = P̃T
1 RiP̃1, K̃i = KiP̃i (i = 1, 2), Ω̃ = P̃T

1 ΩP̃1, S̃ j =

P̃T
1 S jP̃1 ( j = 1, · · · , 4), ρ̃i = ρ−1

i , θ̃i = θ−1
i , ε̃i = ε−1

i .
It is true that

−R−1
i ≤ −2ρP̃1 + ρ2R̃i = Ri (33)

due to −P1R−1
i P1 ≤ −2ρP1 + ρ2Ri holding for ρ > 0.

Define J1 = diag{P̃1, · · · , P̃1︸      ︷︷      ︸
8

, P̃2, I}, J2 = diag{I, I, I, I, I}, J3 = diag{I, · · · , I︸  ︷︷  ︸
3q

}, J4 =

diag{I, · · · , I︸  ︷︷  ︸
m

}. Pre- and post-multiplying Π1 in (14) with diag{J1, J2, J3, J4}, and combining
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with (33), one can know that (29)-(31) are sufficient conditions to guarantee (14)-(15) hold.
This completes the proof.

Assume the system in Section 2 does not have the inner-loop and nonlinear item η(k) and
actuator failures , then the system (2) can be reduced to a single-loop feedback control system
as follows {

x(k + 1) = Ax(k) + BKx(k − d(k)) + BKe(ks, l) + B1ω(k)

y(k) = Cx(k) + Dω(k) k ∈ [ks + dks , ks+1 + dks+1)
(34)

Corollary 1. For given positive constants γ, d1, d2, if there exist matrices P̃ > 0, Q̃i > 0, R̃i >

0 (i = 1, 2) and S̃ =

[
S̃ 1 S̃ 2

S̃ 3 S̃ 4

]
, such that the following LMIs hold

[
Π̂11 ∗
Π̂21 Π̂22

]
< 0, (35)

[
R̃2 ∗
S̃ R̃2

]
≥ 0 (36)

where

Π̂11 =



Θ̂1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
−2R̃1 Θ̃2 ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 Θ̃3 Θ̃4 ∗ ∗ ∗ ∗ ∗ ∗
0 Θ̃5 Θ̃6 Θ̃7 ∗ ∗ ∗ ∗ ∗

6R̃1 6R̃1 0 0 −12R̃1 ∗ ∗ ∗ ∗
0 6R̃2 Θ̃8 Θ̃9 0 −12R̃2 ∗ ∗ ∗
0 Θ̃10 Θ̃11 6R̃2 0 −4Ũ4 −12R̃2 ∗ ∗
0 0 0 0 0 0 0 −Ω̃ ∗
0 0 0 0 0 0 0 0 −γ2I



,

Π̂21 =



C1P̃ 0 0 0 0 0 0 0 D1

AP̃ 0 BK̃ 0 0 0 0 BK̃ B1

d1(A − I)P̃ 0 d1BK̃ 0 0 0 0 d1BK̃ d1B1

d21(A1 − I)P̃ 0 d21BK̃ 0 0 0 0 d21BK̃ d21B1


,

Π̂22 = diag
{
−I,−P̃,R1,R2

}
, Θ̂1 = Q̃1 − 4R̃1 − P̃

Then the NCS (34) under the adaptive ETM (4) is mean square stable with H∞ performance
γ, and the controller gain is K = K̃P̃−1.

4. EXAMPLES

Two examples will be given in this section. A networked single-loop feedback control
system is used in Example 1 to demonstrate the system under the proposed adaptive ETM
has a good control performance. The data-releasing rate maintains a desired level under a
constrained RP, by which the reliability of the control system is enhanced. In Example 2,
a cascade control system with stochastic nonlinearities and actuator failures are considered.
The simulation results show the effectiveness of the proposed method by using the designed
reliable controller and the ETM.
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Example 1: Consider a practical ball and beam system [31] with the following format
{

x(k + 1) = Ax(k) + Bu(k) + B1ω(k)

y(k) = Cx + Dω(k)

where

A =



1.0 0.02 −0.0014 0
0 1.0 −0.14 −0.0014
0 0 1.0 0.02
0 0 0 1.0


, B =



0
0

0.0002
0.02


,

B1 =



0.0202
0.0186
0.0202
0.0200


,CT =



0.5
−0.1
0.5
0.3


,D = 0.1

The initial state x(k) = [−0.4 − 0.4 − 0.4 − 0.4]T and the external disturbance is given
by w(k) = 2e−0.1ksin(0.5k). Obviously, the controlled plant is marginally stable if u(t) = 0. By
using the ETM in [2] with ρ = 0.5, d1 = 1, d2 = 4, γ = 50, we can get the feedback controller
gain and the weight matrix of the conventional ETM by selecting δ = 0.07 as

K =
[
1.8417 3.3887 −16.8578 −6.3581

]
,

Ω =



0.9659 1.4934 −7.0907 −2.5614
1.4934 2.6447 −12.7443 −4.7048
−7.0907 −12.7443 62.4152 23.1883
−2.5614 −4.7048 23.1883 8.7102



Under this conventional ETM and the controller with the above parameters, we can get the
state responses of the system and packet-releasing instants, as shown in Figure 4, from which
one can get the data-releasing rate (η) and the maximum number of continuous packet loss (lM)
are 0.19 and 19, respectively. The total releasing number (TRN), η and lM are listed in Table
1 for 7 different thresholds, from which one can see that, under the traditional ETM, a lower
data-releasing rate leads to a larger maximum number of continuous packet loss. For example,
η is 0.095, and the corresponding lM is 45 for δ = 0.2.

Table 1: The results under the conventional ETM in [2]

δ 0.01 0.02 0.05 0.07 0.18 0.20 0.26

TRN 165 121 89 76 45 38 35
η 0.419 0.303 0.223 0.19 0.113 0.095 0.088
lM 6 9 15 19 39 45 51

The controller receives a small amount of data for a long period for a large RP, which may
destabilize the real NCSs. It is noted that, from the above analysis, the conventional ETM may
lead to a large RP, especially when the system approaches to stability. Next we will verify
the effect of the system under the proposed adaptive ETM. The results of TRN, η and lM are
listed in Table 2 by Corollary 1 with δ0 = 0.205, α1 = 0.05, β1 = 1, α2 = −0.02, λ = 0.5 and
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Figure 4: State responses of x(k) and the releasing instants under the ETM in [2] with δ = 0.07

δM = 0.26. Selecting β2 = 1, one can obtain

K =
[
0.8398 2.1630 −14.5458 −6.5126

]

Ω =



1.9994 4.8801 −31.2594 −13.6332
4.8801 12.2181 −79.8854 −35.0313
−31.2594 −79.8854 531.5943 234.8889
−13.6332 −35.0313 234.8889 104.7517



(37)

Table 2: The results under the proposed adaptive ETM

β2 1 2 3 4

δ(ks, l) [0.01,0.23] [0.01,0.24] [0.01,0.25] [0.01,0.26]
TRN 49 45 46 43
η 0.123 0.113 0.115 0.108
lM 20 21 22 22

Under the proposed ETM with the parameters in (37), one can get the responses shown in
Figure 5. The threshold is not a predetermined constant any more. It varies from 0.01 to 0.23
with β2 = 1. The mean data releasing rate is 12.3%. From Figure 5, one can see that the data
releasing rate during the disturbance period is obviously higher than that without disturbance.
Recalling to Table 1, lM is up to 39 when the data-releasing rate is close to 11% under the ETM
in [2]. Table 2 lists the results of δ(k), TRN, η and lM for β = 1, 2, 3 and 4. The data-releasing
rate remains around 11% when the threshold δ(k) varies from 0.01 to 0.26. The TRNs are also
kept a relatively constant, while the TRNs vary from 35 to 165 under the conventional ETM.

From the results listed in Table 1 and Table 2, one can conclude that the data releasing rate
14
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Figure 5: State responses, the release instants and the threshold of the system with the parameters in (37)

can be significantly reduced by using these two ETMs. However, compared to the conventional
ETM, the maximum releasing period can be constrained to a certain level by using the proposed
ETM. The reliability is consequently guaranteed.
Example 2: Consider a boiler-turbine system with the format of (2) , and the state matrices of
the inertial section and leading section are given as [13]

A1 =

[
0.6887 −0.0093
0.8356 0.9951

]
, B1 =

[
0.8356
0.4437

]
,C1 =

[
0 0.0111

]
,D1 =

[
0.1

]
,

A2 =


−0.0342 −0.4364 −0.0342
0.3425 0.6849 −0.0254
0.2542 0.8762 0.9899

 , B2 =


0.3425
0.2542
0.1008

 , B3 =


−0.0104
0.0483
0.0851

 ,

C2 =
[
0 0 0.1

]
,D1 =

[
0.2

]

The stochastic nonlinear functions are given as

f1(k) =

[
0.2
0.2

]
[0.1x1(k)ν1(k) + 0.1x2(k)ν2(k)]

f2(k) =


0.2
0.2
0.2

 [0.1x1(k)ν1(k) + 0.1x2(k)ν2(k)]

where νi represents the mutually uncorrelated Gaussian white noise sequences with E{νi(k)} =

0,E{ν2
i (k)} = 1 for (i = 1, 2).

The actuator failures are considered in this case, and the corresponding parameters are
ψ̄i = 0.5, σ2

i = 0.5 for i = 1, 2, 3. The networked cascade control strategy is used in this
15
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example. From Theorem 2 with α1 = 0.05, β1 = 1, α2 = −0.02, β2 = 1, λ = 0.2, δ0 = 0.288,
ρ = 0.5, d1 = 1, d2 = 3 and γ = 1, we can get the reliable controllers and the corresponding
parameter of ETM as

K1 = 10−3 ×
[
0.1281 −0.1594

]
,

K2 =
[
−1.1068 −2.4944 −1.5626

]
,

Ω = 10−3 ×
[
0.3993 0.0288
0.0288 0.0123

] (38)

The controller of the system without actuator failures is called the standard controller. By
Theorem 2, the standard controllers and the corresponding parameter of ETM can be obtained
as follows

K1 = 10−3 ×
[
0.2366 −0.5679

]
,

K2 =
[
−1.5872 −4.4631 −3.9180

]
,

Ω = 10−3 ×
[
0.3205 0.0327
0.0327 0.0125

] (39)
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Figure 6: The boiler-turbine system subject to actuator failures using the reliable controller in (38)

Assume the initial states are x1(k) = [0.2 0.3]T and x2(k) = [0.2 − 0.1 − 0.3]T , and the
external disturbance ω(k) = 2e−0.1ksin(0.5k). Figure 6 depicts the state responses of the CC
system with the reliable controller in (38). Obviously the state response of the inner loop is
much more sensitive to the disturbance than the one of the outer loop. Therefore, it is more
reasonable for this case to use the CC strategy to reject disturbance. From Figure 6, one
can see that a large amount of sampling data (about 81.3%) are discarded under the proposed

16
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adaptive ETM, while the maximum number of continuous packet loss is 16. Figure 7 shows the
responses of the case for the system with actuator failures while using the standard controller
in (39). Clearly, the system is unstable under this scenario. It manifests that the proposed
method is effective for the system against the stochastic actuator failures.
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Figure 7: The boiler-turbine system subject to actuator failures using the standard controller in (39)

5. Conclusion

In this paper, an event-triggered control problem has been investigated for a class of NCCSs
subject to stochastic disturbances and actuator failures. A novel adaptive ETM has been devel-
oped. Under this proposed adaptive ETM, a low the data-releasing rate can be got to save com-
munication and computation resources. Meanwhile, a large RP can be avoided, thereby making
the system more reliable than the one under the conventional ETM. Furthermore, stochastic
disturbances and actuator failures are taken into account in modeling cascade control systems.
Finally, two examples are given to illustrate the effectiveness of the proposed method. The
state variables of CC systems are assumed to be measurable in this paper. Similar to [32] and
[33], the method of output feedback control and predictor-based extended-state-observer for
nonlinear NCCSs will be investigated in future research work.
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